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The quasi-solid-liquid phase transition exists widely in different fields, and attracts more attention due to its instinctive mecha-
nism. The structure of force chains is an important factor to describe the phase transition properties. In this study, the discrete 
element model (DEM) is adopted to simulate a simple granular shear flow with period boundary condition on micro scale. The 
quasi-solid-liquid phase transition is obtained under various volume fractions and shear rates. Based on the DEM results, the 
probability distribution functions of the inter-particle contact force are obtained in different shear flow phases. The normal, 
tangential and total contact forces have the same distributions. The distribution can be fitted as the exponential function for the 
liquid-like phase, and as the Weibull function for the solid-like phase. To describe the progressive evolution of the force dis-
tribution in phase transition, we use the Weibull function and Corwin-Ngan function, respectively. Both of them can determine 
the probability distributions in different phases and the Weibull function shows more reasonable results. Finally, the force dis-
tributions are discussed to explain the characteristics of the force chain in the phase transition of granular shear flow. The dis-
tribution of the contact force is an indicator to determine the flow phase of granular materials. With the discussions on the sta-
tistical properties of the force chain, the phase transition of granular matter can be well understood. 
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1  Introduction 

Phase transition phenomena appear widely in the evolution 
of ice jamming, dunes flow, landslides and debris flow un-
der natural conditions, and investigations of the phase tran-
sition attract more attention for understanding the unique 
mechanical properties of granular materials [1–5]. The 
phase transition of granular materials can be divided into 
two categories. One is the transition between static state 
(jamming) and dynamic flow state (unjamming) [6–9], and 
the other is the transition between quasi-static state (sol-
id-like) and rapid flow state (liquid-like) in the shear flow of  

granular materials [10–13]. For the first category, most 
studies focused on the jamming point (J point) [3,14,15], 
and the jamming diagram in terms of volume fraction , 
shear stress τ and granular temperature T [6–8,16,17]. For 
the second category, a series of investigations were per-
formed on the mechanical behaviors of dense granular flows 
under different states to establish the corresponding consti-
tutive models [13,18,19].  

The flow state can be determined by the relationship be-
tween the average stress and the shear rate in the quasi-solid- 
liquid phase transition of granular materials [12,13,18,20]. 
The average stress is proportional to the contact stiffness 
and independent of the shear rate in the solid-like phase; 
whereas it is proportional to the square of shear rate and 
independent of the contact stiffness in the liquid-like phase.  
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During the phase transition, this relationship becomes more 
complex, and is the hot point in establishing the constitutive 
models of dense granular flows [16,21,22]. 

The mechanical properties of granular materials at macro 
scale are related closely to the micro-structure and the in-
teraction between particles at micro scale (i.e., particle 
scale), which can be described with force chain or force 
network. The contact force has been determined to describe 
the characteristics of the phase transition, and the phase 
diagram was also established [12,13,18]. However, the 
structure of force chain has an obvious random distribution 
pattern. For example, the force chain shows strong dynamic 
characteristics with particles sliding in contact and separa-
tion in a shear flow. Consequently, the probability distribu-
tion of the contact force, P(F), has been examined with nu-
merical simulations or physical experiments [23–28]. With 
photo-elastic experiments in a biaxial test cell, the probabil-
ity distribution of the normal and tangential contact force 
was analyzed under the quasi-static compression and shear 
conditions [26]. The distributions are affected by the in-
ter-particle friction, the particle shape and hardness [29–32]. 
However, most of the previous studies worked on the static 
state or jammed granular system, and the results showed 
that the probability distribution of the normal force has an 
exponential tail for forces higher than the average [33–35].  

Recently, the force probability distributions were analyzed 
for dense granular flows [36–38]. Since the force distribu-
tions are quite sensitive to the particle location, a tiny change 
in the inter-particle spacing produces an extremely large 
change in the force. The measurement of the force distribu-
tion has obvious advantages over that of the pair correlation 
function g(r), which is a popular approach to study the mi-
cro-structure in granular systems [34]. However, the distri-
butions are quite different for different granular systems. 
These discrepancies demonstrate the current lack of con-
sensus about the characteristic change in the probability 
distribution of the contact force. A comprehensive function 
is still expectant for the quasi-solid-liquid phase transition. 

Therefore, we study the quasi-solid-liquid phase transi-
tion of a poly-dispersed granular system with soft particles 
under a simple shear state. The quasi-solid-liquid phase 
transition is obtained, and the probability distributions of 
contact forces are analyzed under different shear rates and 
volume fractions. With the statistical analysis of the micro 
structure of the force chain, we can learn the mechanical 
properties of the phase transition of granular shear flows 
comprehensively. 

2  Characteristics of the force chain in a granu-
lar simple shear flow 

2.1  Construction of the simple shear flow  

We adopt the standard techniques developed for non-equi-       

librium molecular dynamics with periodic boundaries to 
construct a simple shear flow with the discrete element 
model [12,13]. The computational domain is first filled with 
a given number of particles to reach a certain volume frac-
tion. The velocity V is in the x-direction, with a constant 
gradient in the y-direction. When one particle moves out 
from any direction of the computational domain, it re-enters 
from the opposite direction to conserve the total granular 
mass. To obtain a random packing of poly-dispersed granu-
lar system at any volume fraction, a face-centered cubic 
lattice using the maximum particle size to define the lattice 
points is adopted. After placing the particles, the domain is 
expanded or compressed to the desired volume according to 
the prescribed volume fraction. The steady state of the 
granular shear flow can be obtained after the shearing mo-
tion. 

In the DEM simulation of granular simple shear flow, the 
boundaries affect the results if the sample size is too small. 
Increasing the sample size increases the computational cost 
sharply. For a simple shear flow of uniform particles, the 
sample size should be at least 7D×7D×7D, where D is the 
particle diameter [13]. For non-uniform granular materials, 
boundary effect decreases due to the enhanced disorder 
from the random distributions of particle size and location. 
Here, the domain size is chosen to be a×b×c=(10×10×10) 

D  where D  is the mean particle diameter [12]. Here, D = 
1.0×102 m, and the particle sizes are generated randomly in 

the range of [0.9 D , 1.1 D ] with a uniform probability 
function. Figures 1(a) and (b) show the velocity distribu-
tions of particles in a steady state at the volume fraction  = 
0.30 and  = 0.62, respectively. 

2.2  Force chain structures in granular simple shear 
flow 

The contact force between two spherical particles is simpli-
fied as a linear spring and a linear dashpot, that is, 

springF k  and dashpotF C  , where   and   are the 

overlap and the relative velocity of the two contacting parti-
cles, respectively. These two kinds of forces act in both the 
normal and the tangential direction of the contact, and the 
normal and tangential contact forces are written as Fn and  
Ft, respectively. The composition of the two force compo-

nents is 2 2
a n t .F F F   Their mean values are noted as 

<Fn>, <Ft> and <Fa>, with < > meaning the average value. 
The normal damping coefficient is modeled as nC   

n n( ) ,A BM M K   where the dimensionless damping n  

is defined by the restitution coefficient e as n   

2 2ln / ln .e e    The tangential stiffness t n ,K K  

here  = 1.0, and the tangential damping force is ignored 
[12,18]. The tangential force is limited by a friction slider  



 Ji S Y   Sci China-Phys Mech Astron   February (2013)  Vol. 56  No. 2 397 

 

Figure 1  (Color online) Shear velocity distributions at  = 0.30 (a) and  
= 0.62 (b). Here particles with high velocity are in light color, and those 
with low velocity are in dark color. 

such that the maximum tangential contact force equals  
times the normal contact force.  

Here, the particle density ρ =1.0×103 kg/m3, the mean 

stiffness nK =1.0×107 N/m, the friction coefficient between 

particles μ=0.5, and the coefficient of restitution e = 0.7. To 
study the shear flow generally, we define a dimensionless 

shear rate 3
n/ .B D K     The volume fraction   and 

the dimensionless shear rate B are chosen to be in a wide 
range of 0.30–0.65 and 1.0–1.0×104, respectively, to obtain 
a comprehensive phase transition from solid-like to liq-
uid-like phase. 

Figure 2 plots the force chain distributions at B = 
1.0×102 and  = 0.40, 0.50 and 0.60, respectively. It shows 
the density and strength of the force chain increase with the 
increasing volume fraction. The mean contact force <Fa> is 
0.13 N, 0.21 N and 1.67 N, respectively.  

To investigate the influence of the shear rate, we plot the 
force chain distributions in Figure 3 when the volume frac-
tion  = 0.54 and the dimensionless shear rate B = 1.0×101, 
1.0×102 and 1.0×103, respectively. The strength and den-
sity of force chain increase with the decreasing shear rate B. 
Therefore, the force chain density and strength are quite 
different under various shear rates and volume fractions. 

 

Figure 2  (Color online) Force chain distributions at various volume 
fractions when the dimensionless shear rate B=1.0×102. (a)  = 0.40; (b)  
=0.50; (c)  = 0.60. 

 

2.3  Quasi-solid-liquid phase transition in the granular 
shear flow 

Figure 4 plots the contact force <Fa> with different volume 
fractions in the range of 0.30–0.65 and dimensionless shear 
rates in the range of 1.0–1.0×104. It shows <Fa> is inde-
pendent of the shear rate B at higher volume fraction, and 
increases with B linearly in the logarithmic coordinates at 
lower volume fraction. This distribution is similar to that of 
the average stress, which was adopted to analyze the phase 
transition of granular shear flow [12,13]. The granular ma-
terial exhibits solid-like behavior when the stress (or contact 
force) is independent of the shear rate, otherwise with liq-
uid-like behavior. Figure 5 plots the phase diagram for the 
quasi-solid- liquid transition, by considering the average  
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Figure 3  (Color online) Force chain distributions at various shear rates 
when the volume fraction  =0.54. (a) B=1.0×10(b) B = 1.0×102; (c) B= 
1.0×103. 

 

Figure 4  (Color online) Distributions of the contact force in the qua-
si-solid-liquid phase transition of granular shear flow. 

 

Figure 5  Phase diagram of the quasi-solid-liquid phase transition of  
granular shear flow. (a) Phase diagram in 3D; (b) phase diagram in 2D. 

dimensionless stress n/ij ij D K     (i, j = 1, 2, 3) [39]. In 

this phase diagram, the coordination number is given to 
show the evolution of phase transition distinctly. This dia-
gram gives a global view of the quasi-solid-liquid phase 
transition under various shear rates and volume fractions. 

3  Probability analysis of the contact force in 
phase transition 

3.1  Probability distribution of contact forces in the 
solid-like and liquid-like phase 

To compare the probability distributions of forces in normal 
and tangential directions, we select two cases in the phase 
diagram. One is in the liquid-like phase with  = 0.50 and 
B=1.0×103, and the other is in the solid-like phase with  = 
0.60 and B=1.0×104. Here, the normalized contact force f = 
F/<F> is introduced to analyze the probability of the force 
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chain strength. The normalized inter-particle normal, tan-
gential and total contact forces are written as fn, ft and fa, 
respectively, with variable F representing corresponding Fn, 
Ft, or Fa. Figures 6 and 7 plot the probability distributions of 
contact forces in the liquid-like and solid-like phase, respec-
tively. In the same phase, all the contact forces have similar 
probability distributions, while the shape of the probability 
function is quite different for different phases.  

The probability distribution function of the normalized 
total force in the liquid-like phase (as shown in Figure 6), 
appears as an exponential distribution, and can be written 
as: 

 a

a( ) e ,AfP f A   (1) 

where fa is the normalized total contact force. The parameter 
A is determined to be 1.080.  

The probability distribution function of the normalized 
total force in the solid-like phase (as shown in Figure 7), 
can be fitted by the Weibull probability distribution function 
as: 

 
a1

a
a( ) e ,

k
fk

fk
P f 

 

  
 
    

 
 (2) 

where the parameters k and   are determined as k=1.286 
and  =1.107, respectively. 

 

Figure 6  (Color online) Probability distributions of contact forces in the 
liquid-like phase ( = 0.50 and B=1.0×103). 

 
Figure 7  (Color online) Probability distributions of contact forces in the 
solid-like phase ( = 0.60 and B=1.0×104). 

Comparing eqs. (1) and (2), we find the exponential dis-
tribution is a special type of Weibull distribution. In fact, eq. 
(1) can also be written in the form of eq. (2) with the pa-
rameter k=1.0 and  =A1

 = 0.926, respectively. In both 
cases, the probability distribution function decays exponen-
tially for large force. These characteristics have been veri-
fied in many experimental results and numerical simulations 
[23,26,33–35]. 

3.2  Evolution of contact force distributions during 
phase transition 

By keeping the dimensionless shear rate as a constant of 
B=1.0×102, the granular system transforms from the liq-
uid-like phase to the solid-like phase when the volume frac-
tion  is increased from 0.30 to 0.65. Figure 8(a) plots the 
probability distributions at the volume fractions of 0.40, 
0.50, 0.56 and 0.60, respectively. The Weibull probability 
function of eq. (2) is adopted to fit the normalized contact 
forces. The fitting curves are also plotted in Figure 8(a), and 
the probability parameters are listed in Table 1. The fitted 
curves show that the Weibull function describes effectively 
the probability distribution from the solid-like phase to the 
liquid-like phase. For the solid-like phase, such as 
B=1.0×102, =0.60, P(fa) has a peak at fa=0.60. For large 
contact force, P(fa) approaches zero when fa > 4.0; For small 
contact force, P(fa) is about 0.35 when fa → 0.0. For the 
liquid-like phase, such as B=1.0×102, =0.40, P(fa) has the 
maximum value when fa → 0.0, and then decreases expo-
nentially with the increasing contact force. In this situation, 
the parameter k = 1.015, which is close to 1.0. It is a perfect 
exponential distribution when k = 1.0. In other words, P(fa) 
is an exponential function in the liquid-like phase. 

Similarly, by keeping the volume fraction as a constant 
of  = 0.56, the granular system transforms from the sol-
id-like phase to the liquid-like phase. Figure 8(b) shows the 
corresponding probability distribution of the normalized 
contact forces with B=1.0×101, 1.0×102, 1.0×103 and 
1.0×104, respectively. The evolution of the contact force 
distributions from the solid-like phase to the liquid-like 
phase is quite similar to that in Figure 8(a). Still using the 
Weibull distribution function, the parameters are deter-
mined in different phases as listed in Table 1. In this situa-
tion, the parameter k =0.993, which is also close to 1.0, in 
the liquid-like phase with B=1.0×102 and =0.56. There-
fore, the distribution can also be matched with the exponen-
tial function.  

From Figure 8, we can find the Weibull function can de-
scribe the contact force distributions in both solid-like and 
liquid-like phases. During the phase transition by changing 
either the shear rate or the volume fraction, the force chain 
probability distributions have similar trends. Especially the 
parameter k decreases from around 1.40 to 1.0 in the phase 
transition from the solid-like to the liquid-like phases. In the  
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Figure 8  (Color online) Probability distribution of the normalized contact 
force under different phases of granular shear flow.  

Table 1  Distribution parameters of the contact force with the Weibull 
function 

B = 1.0×102   = 0.56 

 k   B K  

0.60 1.406 1.124  1.0×101 1.342 1.149 

0.56 1.315 1.113  1.0×102 1.315 1.114 

0.50 1.128 1.025  1.0×103 1.122 0.972 

0.40 1.015 1.040  1.0×104 0.993 0.788 

 
 
liquid-like phase, the probability function also transforms 
from the Weibull function to the exponential function via k 
→ 1.0. In the physical experiment of Mueth et al. [33], the 
probability of a bead having a certain force decays expo-
nentially as ( ) e fP f  , with 1.5 0.1    for the forc-

es greater than the mean f=1. Moreover, the exponent in the 
exponential part of the distribution can be 1.8 [40]. 

4  Discussions on probability distributions of 
the contact forces in the phase transition 

The probability distribution of the contact force is an effec-
tive approach to distinguish the micro-structures of force 
chains in different phases, since the forces are sensitive to 
minute variations in particle positions. The distribution of 

the contact force can serve as a micro-scope to observe the 
correlation in the positions of the nearest neighbors. In the 
following, we discuss the phase transition mechanism indi-
cated in the inter-particle contact force distributions. 

4.1  Distribution of contact forces in solid-like phase 

In the solid-like phase, also called jamming state, the dis-
tribution functions of the contact forces were determined 
with physical experiments and numerical simulations. For 
the frictional granular system, the probability function P(f) 
decays exponentially above the average force, and has a 
small peak at force magnitude below f. The characteristic 
shape of P(f) has become a signature of a jammed granular 
system [9,34,35]. From the photo-elastic experiment of the 
static granular shear system performed by Majmudar et al. 
(2005), the normal force in the solid-like phase has the sim-
ilar probability distribution as presented in this work, but 
the distributions of the tangential force are quite different. 
The peak in the probability distribution disappears under 
large shear strain [28]. For the granular system compressed 
in a cylindrical container, the distributions of contact forces 
are affected by the boundary and stress level [25]. Van 
Hecke discussed the probability distribution of the contact 
force in the static state with the photo-elastic results, and 
also compared with others results. He found a change in the 
‘tail’ of the distributions (characterizing the particles carry-
ing the largest forces). Jammed granular systems produce 
tails with an exponential fall-off, whereas yielded systems 
produce much steeper tails. Thus, flowing grains can avoid 
large forces more effectively than those that are jammed 
[41]. 

With carbon paper and elasticphone grains, the normal 
force distributions on the box bottom boundary were deter-
mined. An exponential function was adopted to fit the force 
distribution as [23]: 

 ( ) e ,AfP f C   (3) 

where parameters were determined as A=0.64 N1，C=988 

for the total region, and A=1.02 N1, C=736 for the inner 
region.  

With the measurements of the normal forces distributed 
in the static granular system under uniaxial compression, a 
probability distribution function was developed as [33]: 

  2

( ) 1 e e ,f fP f a b     (4) 

where a = 3.0, b = 0.75 and β = 1.5, respectively. Their re-

sults also show the exponential tail as ( ) e fP f   at 

large f, a flattening out of the distribution near f ~ 1, and a 
slight increase in P(f) as f decreases towards zero. 

For the static granular system, the distribution function 
P(f) normally has the form as [40]: 
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,     if   1,

( )
e ,   if   1.f

f f
P f

f





  


 (5) 

Müller et al. [42] discussed the distribution forms in de-
tail. From the functions above, we can find large contact 
forces exhibit exponential decay, such that the equation 
forms can be different. 

4.2  Distribution of contact forces in liquid-like phase 

For the contact force distribution in a granular flow, some 
attempts were made to demonstrate the mechanical proper-
ties of granular system on micro scale. Longhi et al. [36] 
measured the normal component of impulses (impact force) 
in a granular hopper flow and found the large forces have 
the exponential tails at different flow rates, but the distribu-
tions of small forces change with the flow rate. At slower 
flow rates, P(f) tends to move upwards rather than bends 
down, and forms a peak.  

For the sake of describing the large contact force distri-
butions in a shear cell under different shear rates, a complex 
distribution function was established considering the elastic 
potential in the particle deformation with the Hertzian con-
tact force model as [34]: 

 

2

2 3 5/3
1/3

0

1
( ) 1 exp ,P f a f f

d f




   
     

  
 (6) 

where α is a normalized constant,   is the average de-

formation of a particle, d is the particle diameter, and the 
parameter B1 / ( ).k T   Here T is the granular temperature, 

and kB is the Bolzmann’s constant. 01 /   is a temperature 

scale set by the average force per bead and the bead elastic 
modulus. For small forces, the distribution function can be 
written as 1/3( )P f f  . With this equation, the contact 

force distributions match the experimental data well. Since 
the granular temperature T, which can be thought of as an 
index of shear rate in a granular system, is considered in eq. 
(6), the distribution of contact forces can be fitted in both 
solid-like and liquid-like phases [34]. 

Recently, eq. (6) was applied well in the normal and tan-
gential contact force distributions in 2-D annular shear 
granular systems simulated with the linear contact force 
model under different shear rates and volume fractions 
[43,44]. Chan and Ngan [45] discussed the rationality of eq. 
(6) based on the contact force model between particles, and 
then worked out a simplified form to analyze their experi-
mental data as: 

 5/3 2 /3( ) exp( ( )).P f a k f bf    (7) 

In their experiments, the polystyrene spheres were 
packed in an acrylic tank. With random and regular HCP 
(Hexagonal-close-packed) packing patterns, different force 

distributions were obtained. The value of k is in the range of 
0.2–0.4 for random packing, while it is in the range of 
2.0–3.0 for the HCP packing. Under high pressure with 
HCP packing, the value of k can increase to 4.0 [46]. The 
indication of k value means the shapes of distribution. Small 
value of k means the narrow shape of the distribution func-
tion and rapid decay of the contact force. Moreover, the 
parameter a means the probability density at f =0. Here, we 
call eq. (7) Corwin-Ngan function for convenient discussion 
of the distribution characteristics below.  

In this work, the probability distributions of the normal-
ized contact force fa are analyzed with eq. (7) in different 
phases. With constant dimensionless shear rate B=1.0×102, 
the distributions are plotted in Figure 9(a) when the volume 
fraction  = 0.40, 0.50, 0.56 and 0.60, respectively. With 
the increasing volume fraction, the granular system shows 
phase transition from the liquid-like to the solid-like. The 
parameter k increases from 0.303 at  = 0.40–0.877 at  = 
0.60. Moreover, if the volume fraction is kept as a constant 
of  = 0.56, and the shear rate B is increased from 1.0×104 
to 1.0×101, the phase transition from the solid-like to the 
liquid-like can also be obtained. The distributions of the 
contact force are plotted in Figure 9(b), and the parameters 
are listed in Table 2. We can also find the similar evolution 
of parameter k. From the fitted curves in different phases, as 
shown in Figure 9, we can conclude that eq. (7) can also  

 

Figure 9  (Color online) Probability distribution of the contact force 
under different phases of a granular shear flow.  
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Table 2  Fitted parameters for the distribution of contact force 

B=1.0×102  = 0.56 

 a k b B a k b 

0.60 0.391 0.877 1.354  1.0×101 0.447 0.725 1.185 

0.56 0.492 0.723 1.023  1.0×102 0.492 0.723 1.023 

0.50 0.899 0.383 1.025  1.0×103 0.954 0.431 0.973 

0.40 0.967 0.303 1.889  1.0×104 1.378 0.428 2.285 
 

 
well describe the probability distributions in different phas-
es. Further, Figure 9 and Table 2 show that the value of a 
increases during the transition from the solid-like to the 
liquid-like phase, and the value of b decreases during this 
transition. 

With eqs. (2) and (7), the probability distributions during 
phase transition can be simulated efficiently both by the 
Weibull function and the Corwin-Ngan function, and the 
Weibull function can match the data better as seen in Fig-
ures 8 and 9. But the three parameters in the Corwin-Ngan 
function, i.e., k, a and b in eq. (7), have obvious meanings. 
In fact, the variable k/ in eq. (2) is equivalent to the varia-
ble a in eq. (7) when fa → 0.0.  

4.3  Indication of the contact force distributions in 
phase transition 

The probability distribution of the contact force indicates 
the interaction between particles, and has close relationship 
with the behaviors of granular flow. Based on the probabil-
ity analysis above, the distribution shapes are quite different 
in the solid-like and the liquid-like phases, and have a pro-
gressive evolution between the two phases. 

In the liquid-like phase, the granular system flows rapid-
ly under low volume fraction. Most of the interactions be-
tween particles are in binary contact manner, and are domi-
nated by the shear velocity. In this way, the particle contacts 
are quite weak accompanied with small elastic deformation 
between particles. Meanwhile, some large contact forces 
can also occur stochastically. The particles flow with a cer-
tain velocity under a random fluctuation. The fluctuations of 
the particle velocity have been observed in the granular 
flow systems, such as in shear cell test [47]. Therefore, the 
small contact force has high probability distribution in the 
liquid-like phase. With the increasing contact force, the 
probability decreases exponentially. 

In the solid-like phase, the particles have large elastic 
deformation with low velocity. The contact forces among 
particles are dominated by the deformation instead of the 
particle velocity. Since the stochastic distribution of the 
force chain is in the spatial domain, the distribution curve of 
the contact force has a peak at about 0.50fa, and decays ex-
ponentially with the increasing contact force. Moreover, the 
probability of small contact force can also occur. The dis-
tribution of the contact force was also observed in the jam-
ming state of granular systems [9,24,26,48]. 

From Figures 8 and 9, we can find the progressive evolu-
tion of the contact force distributions from the solid-like to 
the liquid-like phase. The difference is the location of the 
distribution peak. The peak is located at the lowest force for 
the liquid-like phase, and located at 0.50fa for the solid-like 
phase. For the lowest force, the probability density P(fa→

0.0) is about 0.40 in the solid-like phase, and is about 1.20 
in the liquid-like phase. During the transition from the sol-
id-like phase to the liquid like phase, the probability density 
of small contact force increases continuously. This indicates 
the granular system is more liquid-like, and more small 
contact forces appear. In this situation, the granular system 
is more instable. Moreover, from the trails of the contact 
force distribution (as shown in Figures 8 and 9), we can find 
the force distribution in a liquid-like system decays more 
rapidly than that in a solid-like system. The distributions in 
various phases approach zero when fa > 4.0. From the 
shapes of the contact force distribution, the phase of the 
granular flow can be indentified. 

5  Conclusions 

During the quasi-solid-liquid phase transition of a granular 
shear flow, the mechanical behaviors of the granular system 
at macro scale are dominated by the inter-particle contact 
forces at micro scale. The probability analysis on the con-
tact forces can help understand the internal mechanism of 
phase transition of the granular system. In this study, the 
discrete element model is adopted to simulate the simple 
granular shear flow. The quasi-solid-liquid phase transition 
is obtained under various volume fractions and shear rates. 
Based on the phase diagram of the granular shear system, 
the normalized contact force distributions are analyzed in 
different phases. The normal, tangential and total forces 
have the same probability distribution. Here, the normalized 
total contact force is analyzed. The Weibull function fits the 
simulated results well in the solid-like phase, while the ex-
ponential function matches the data in the liquid-like phase. 
To determine the progressive evolution of the force distribu-
tion during phase transition, we use the Weibull function to 
fit the contact force in various phases. Meanwhile, the Cor-
win-Ngan function is adopted to describe the probability 
distribution of the contact force during the phase transition. 
Both of them match the contact force distribution effectively. 
The indication of the force distribution on force chains is 
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discussed. With the determination of the force distribution 
during the phase transition, the mechanism of granular be-
haviors can be understood well under different flow phases. 
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